

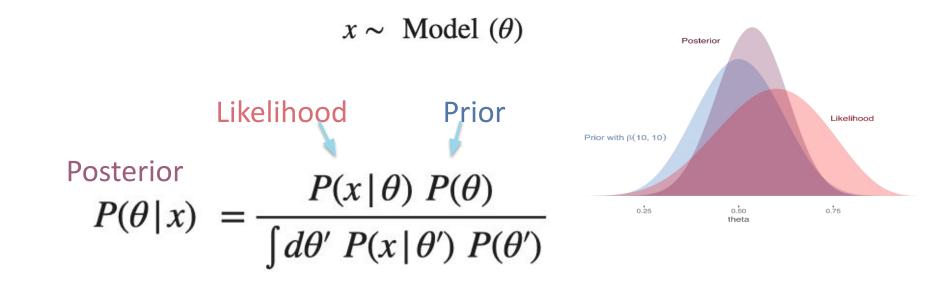
Simulation-based Inference Cosmology from Strong Lensing

Becky Nevin and DeepSkies Lab

December, 2023 COFI AI/ML Winter School

Bayesian Inference

Given an observation x, we want to infer the parameters θ of the model

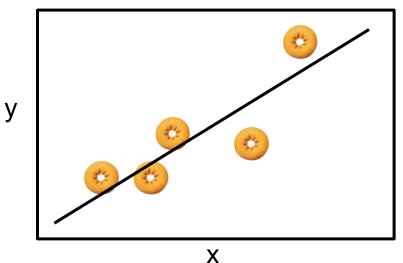


(Hidden slide) Idea

Reframe previous equation as whatever / p(x) and then expand on p(x) and likelihood and talk about how they can be intractable under certain conditions

Simple example

Task: predict parameters θ::m,b given data::x,y



$$y = mx + b$$
$$y = f(x) + \varepsilon$$

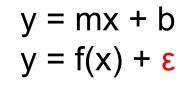
Given these data, what is p(theta|x)?

Bayesian Inference

- The model / simulator can be complicated with high dimensional parameters and latent variables
- Intractable Likelihood:

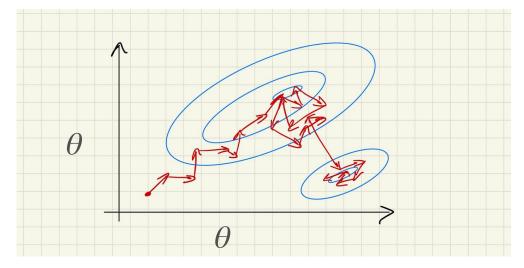
$$P(x \mid \theta) = \int dz \ P(x, z \mid \theta)$$

Quick MCMC, not so fast



Likelihood (under a Gaussian assumption):

 $p(x|\theta) = Normal(evaluated at each theta)$

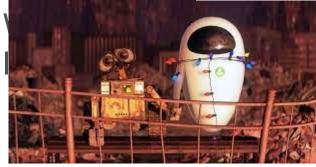


Given these data, what is $p(\theta|x)$?

(Hidden slide) What does it mean for evidence or likelihood to be intractable?

(Hidden slide) Introduction to Bayesian compute

Marriage of Bayesian inference and computation



was a way to do this without the access to an efficient simulation...

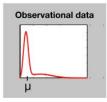
Bayesian Inference

- The model / simulator can be complicated with high dimensional parameters and latent variables
- Intractable Likelihood

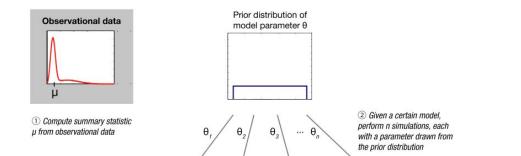
$$P(x \mid \theta) = \int dz \ P(x, z \mid \theta)$$

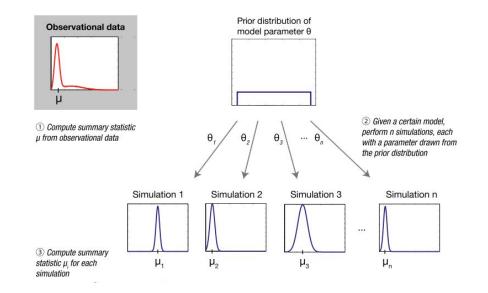
Simulation Based Inference (SBI)

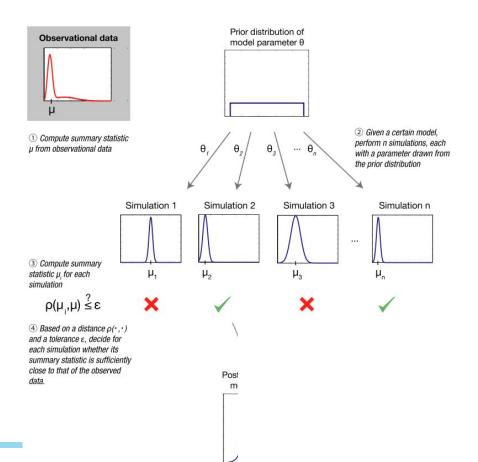
• Statistical Inference in the case of intractable likelihood (Likelihood Free Inference)

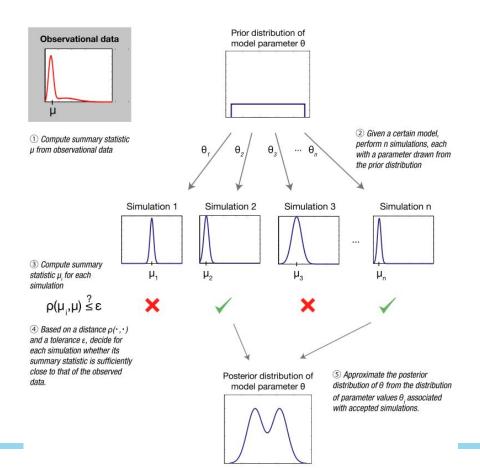


1) Compute summary statistic µ from observational data







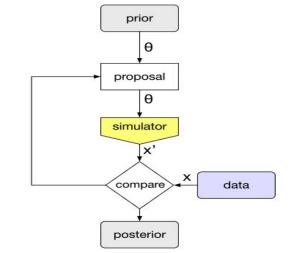


🛟 Fermilab

Challenges:

- Many simulations needed
- Sampling efficiency (Monte Carlo) scales poorly with high dimensional data
- Inference for new observations requires running the entire inference

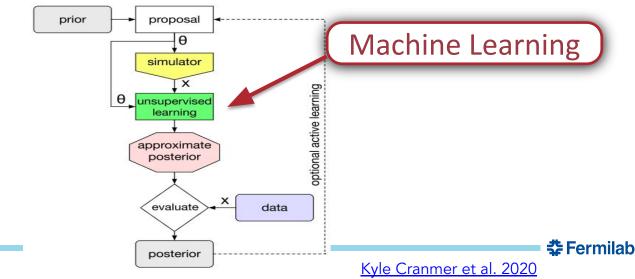
Approximate Bayesian Computation with Monte Carlo sampling



Kyle Cranmer et al. 2020

SBI using Machine Learning

- Computationally expensive upfront simulation to get
- Use ML to learn the posterior, likelihood, or likelihood ratio
- Can evaluate new data without having to retrain the model!

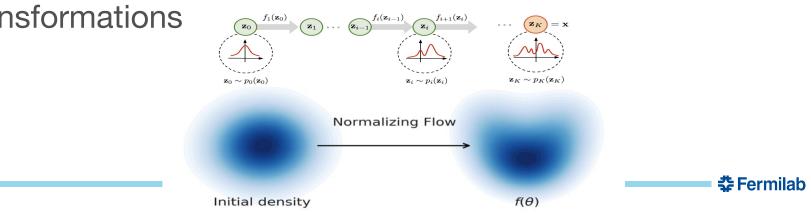


Neural Density Estimators

- An estimate of the exact posterior $p(\theta|x)$ can be learnt from neural density estimators $q_{\phi}(\theta|x)$
- Maximize the average $\frac{1}{N}\sum_{n} \log q_{\phi}(\theta_{n}|x_{n})$

Neural Density Estimators

- An estimate of the exact posterior can be learnt from neural density estimators
- Maximize the average $\frac{1}{N}\sum_{n} \log q_{\phi}(\theta_n | x_n)$

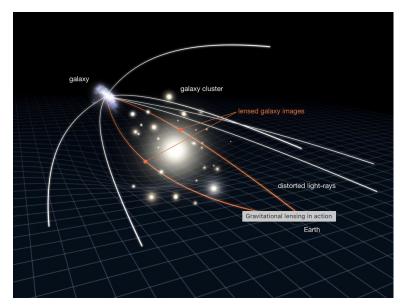


Cosmology from Strong Gravitational Lensing using SBI

Cosmology constraints from simulated lensed images

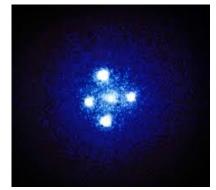
Cosmology from Strong Gravitational Lensing using SBI

- Cosmology constraints from simulated lensed images
- Strong Lensing
 - Lensed by massive elliptical galaxy or galaxy cluster



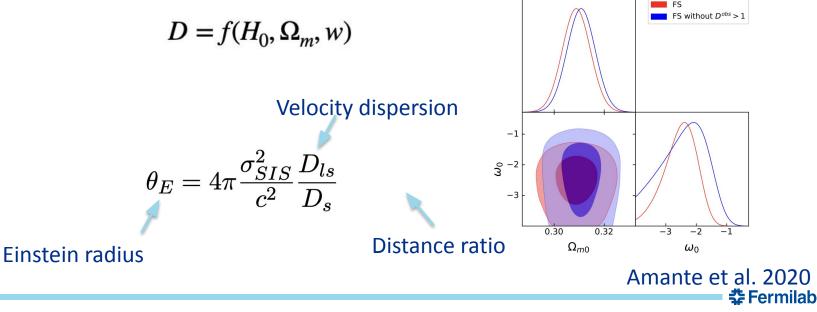
Cosmology from Strong Gravitational Lensing using SBI

- Cosmology constraints from simulated lensed images
- Strong Lensing
 - Lensed by massive elliptical galaxy or galaxy cluster
 - Arcs and multiple images



Cosmology from static strong lenses

- Constrain on matter density Ω_m and dark energy equation of state parameter w through distance ratio
- Cosmology independent of Hubble constant H_0



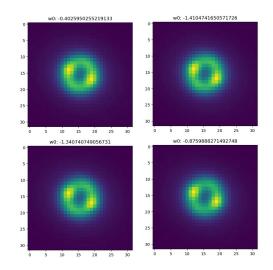
²² CSAID Meeting 09/05/23

SBI setup

• Python package :

https://www.mackelab.org/sbi/

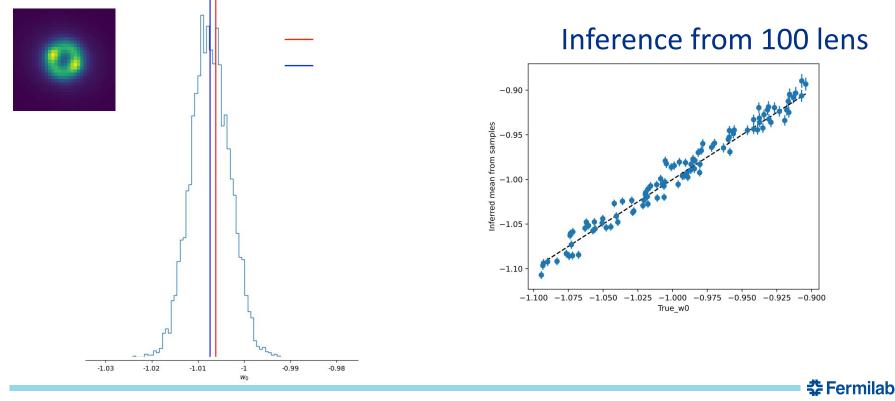
- Inputs to the SBI package
 - Simulated strong lens images : Deeplenstronomy
 - Priors on the parameters
- Masked Autoregressive Flows [Papamakarios et al. 2018] as Neural Posterior Estimator
- Keeping all parameters except fixed
- Train on 100k images



²³ CSAID Meeting 09/05/23

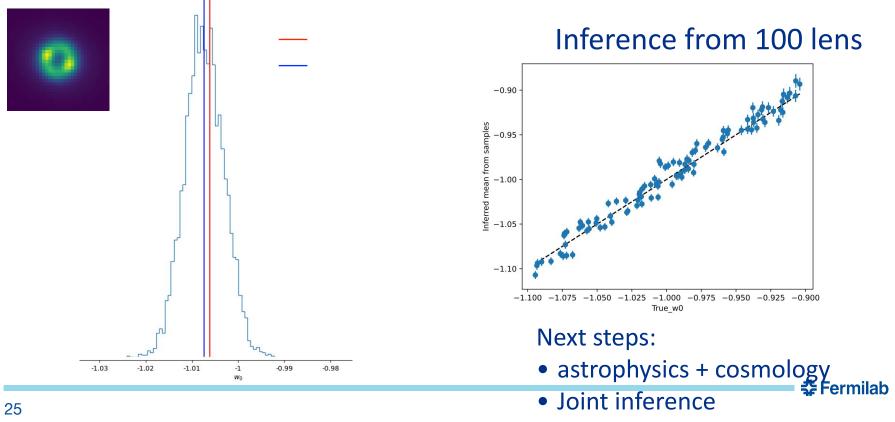
Dark Energy equation of state parameter

Inference from a single lens



Dark Energy equation of state parameter

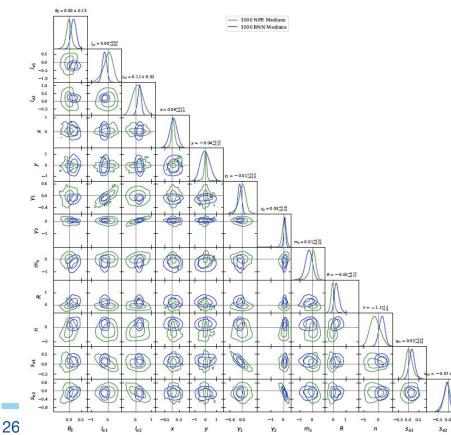
Inference from a single lens

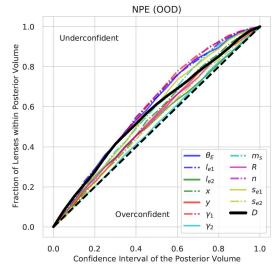


SBI to infer astrophysics parameters from Strong Lensing Jason Poh et al. and DeepSkies NPE (OOD)

 -0.07 ± 0.19

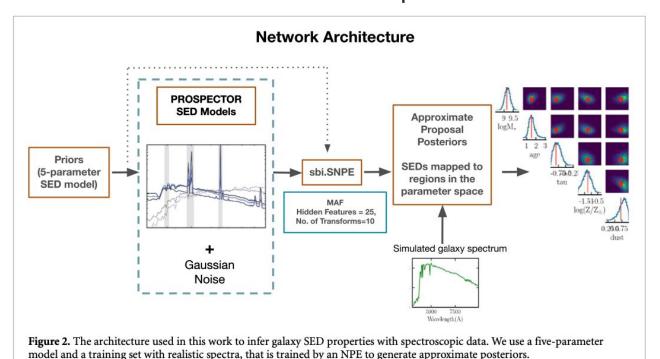
Se2





SBI to infer galaxy properties from spectra

Khullar et al. 2022 and DeepSkies



🗳 Fermilab

Tutorial

• Go to colab link

So where do we go from here?

- Hierarchical paradigm: retrieve population and astrophysics parameters
- Other formats such as graph neural networks
- The question of uncertainty

Summary

- Simulation Based Inference
 - Intractable likelihood
 - Machine learning methods are amortized i.e. can evaluate posterior from new data without retraining the model
 - Computationally efficient than MCMC based methods
- Can constrain astrophysics and cosmology parameters from strong lens images using SBI

EXTRAS

Density Estimators (Thanks to Jason!)

- Unsupervised method of getting structure from data:
 - Given , what is ?
 - Given , what is ?
- Gaussian Density Model

Model:
$$q_{\boldsymbol{\phi}}(\mathbf{x}) = \frac{1}{\left|\det(2\pi\boldsymbol{\Sigma})\right|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) \text{ where } \boldsymbol{\phi} = \{\boldsymbol{\mu}, \boldsymbol{\Sigma}\}.$$

Training:

Parametric density models are typically estimated by maximum likelihood. Given a set of training datapoints $\{\mathbf{x}_1, \ldots, \mathbf{x}_N\}$ that have been independently and identically generated by a process with density $p(\mathbf{x})$, we seek a setting of the model's parameters ϕ that maximize the average log likelihood on the training data:

$$L(\phi) = \frac{1}{N} \sum_{n} \log q_{\phi}(\mathbf{x}_n).$$
(2.13)

Generative model learning algorithm

From Papamakarios (2019)

Training samples Each arrow represent a sample Variable 1 Learned Distribution 🛟 Fermilab

Neural Density Estimators

• Neural Networks to parameterize density model

$$L(\boldsymbol{\phi}) = \frac{1}{N} \sum_{n} \log q_{\boldsymbol{\phi}}(\mathbf{x}_n) = \frac{1}{N} \sum_{n} f_{\boldsymbol{\phi}}(\mathbf{x}_n).$$

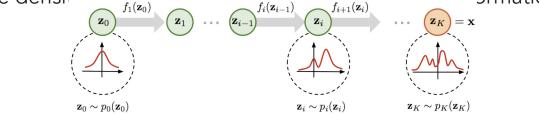
• The parameters of the Neural network are updated through gradient descent

$$\nabla_{\boldsymbol{\phi}} \hat{L}(\boldsymbol{\phi}) = \frac{1}{M} \sum_{m} \nabla_{\boldsymbol{\phi}} f_{\boldsymbol{\phi}}(\mathbf{x}_{n_m}).$$

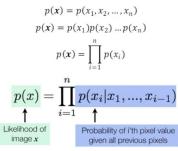
- SBI has 4 built-in density estimators:
 - Masked Autoregressive Flow (MAF)
 - Neural Spline Flow (NSF)
 - Masked Autoencoder for Distribution Estimation (MADE)
 - Mixture Density Network (MDN)

MAF

- Normalizing Flow of Autoregressive Models
- Normalizing flow
 - base density to target density though invertible transformation



- Autoregressive models
 - Decompose Target dei



nditionals and models of conditionals