Kinematic Signatures
of Galaxy Evolution

The Energetics of AGN
Outflows and the Accurate
|dentification of Merging
Galaxies

Rebecca Nevin




Galaxy properties like color are bimodal, which implies evolution
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Galaxies evolve from blue spiral galaxies to
quenched red elliptical galaxies

Disrupt/heat/expel/
use up gas




A complex interplay of processes drives
galaxy evolution




Many different processes drive galaxy evolution; they operate
over different time and size scales
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Galaxy mergers can drive evolution
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Many different processes drive galaxy evolution; they operate
over different time and size scales

Tumlinson+ 2017 ."



AGN
Outﬂowr/ Gas Inflows




These evolutionary processes leave characteristic imprints on
the kinematics of a galaxy
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Kinematics is the hero we
deserve and the hero we
need right now.
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Galaxy evolution is driven by multiple processes...

AGN Feedback Galaxy Mergers




Galaxy evolution is driven by multiple processes...

AGN Feedback

150
100
50

o

-50
— 100
—150




A supermassive black holes that is actively accreting
enough gas is an Active Galactic Nucleus

-

Hubble Space Telescope



A supermassive black holes that is actively accreting
enough gas is an Active Galactic Nucleus

Hubble Space Telescope Chandra X-ray Observatory



Feedback is any process that disrupts gas and affects star
formation



Feedback = Energy + must couple energy to the ISM

— AGN Outflow



The Millennium
simulation predicts a
halo mass function

Mutch+ 2013
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AGN scaling relations |
require a mechanism |
for feedback
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High luminosity AGN have powerful outflows
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High luminosity AGN are rare




High luminosity AGN are rare

Bolometric luminosity
function for all AGN
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Moderate luminosity AGN are common
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The SDSS double-peaked profiles are from
integrated fiber spectra; they do not provide

spatial information
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With follow-up optical longslit spectra of two
orthogonal PAs, | determine the kinematic

origin of the double-peaked emission lines
(Nevin+ 2016)
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| determine the kinematic origin of the

double-peaked emission lines  (Nevin+
2016) Outflow

Inflow

Rotation-dominated +
Obscuration

Rotation-dominated
+ Disturbance

LAy



The double-peaked lines in this
sample are mostly produced by
outflows (58/71) Outflow

See also:

Smith+ 2011

Fu+ 2012
Muller-Sanchez+ 2015
Lyu+ 2016



We model the 18 AGN (that are
dominated by outflows on all scales)
as biconical outflows

Fischer+ 2017
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| use a MCMC to determine the posterior distribution
functions of the bicone parameters

half



The bicones are large
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The bicones are large
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The bicones intersect the planes of their host galaxies, which
increases the coupling of the bicone energy to the ISM

Bicone PA
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This sample of
moderate luminosity
AGN outflows is
energetic
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| measured g-r
color and sSFR
compared to a
control sample

sSFR =SFR /M,

-




The AGN outflows are potentially impacting their host galaxies

J1606+3427 J0930+3430 J1109+0201

3 host galaxies have lower sSFRs and/or redder

0 host galaxies have higher sSFRs and/or bluer



The moderate
luminosity AGN
outflows are
potentially
iImpacting their
host galaxies

A(g-r)

2.0

—— Belfiore+2018
— Renzini+2015 0.10
1.5
| o |
—
> 0.05
©
=,
nd 0.00
LL
N
o
—
(@) -0.05
L=,
®
=1.5
-0.10
=20
9.0 9.5 10.0 10.5 11.0 11.5

log10 M« [Mg]



The moderate Alg-r)
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Galaxy evolution is driven by multiple processes...

Galaxy Mergers
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The ULIRG NGC6240 is a
great example of a major
merger —




Galaxy mergers can trigger
Important evolutionary
processes such as star
formation and AGN activity




It is unclear how important galaxy mergers are for driving galaxy
evolution due to the difficulty of accurately identifying them



It is unclear how important galaxy mergers are for driving galaxy
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Imaging
of Galaxy
Mergers
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Merging galaxies are typically identified using imaging techniques
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Merging galaxies are typically identified using imaging techniques
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Different imaging predictors excel at identifying different types of
merging galaxies

R Imaging Predictors:
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Laura Blecha runs N-body hydrodynamics GADGET-3
simulations with SUNRISE dust radiative transfer



Laura Blecha runs N-body hydrodynamics GADGET-3
simulations with SUNRISE dust radiative transfer
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http://www.youtube.com/watch?v=431lGpe3o8U

| create mock images that match the specifications of SDSS

- " .

Early Stage Early Stage Late Stage Late Stage

Isolated

Post-coalescence Post-coalescence Post-coalescence Isolated



| cover a range of merger initial conditions

1:3, gas poor

1:3, gas rich

1:5, gas rich

1:10, gas rich



Mass ratio is the most important merger parameter
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| additionally combine the major and minor mergers:

Major Merger Combined Minor Merger Combined




The imaging predictors cannot
alone separate merging from

nonmerging galaxies
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Linear Discriminant Analysis separates merging and
nonmerging populations and assigns a probability

- 1.0 Major Mergers
508
o
Qos
[0}
2= 0.4
@©

s Nonmerger
Merger

fo)
o 0.2

0.0

LD1

= I Nonmerger
5 0.8
s Merger

LD1

Nevin+ 2019



Linear Discriminant Analysis separates merging and
nonmerging populations and assigns a probability
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The imaging predictors evolve over the timeline of the merger
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The imaging predictors evolve over the timeline of the merger
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The galaxies are most disturbed in Gini-M, in the late stage
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LDA has the longest timescale of merger observability (compare
to other methods)
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The merger observability timescale is maximized for
the LDA technique

Observability Time




| create a test sample of ~150 ‘superclean’ SDSS galaxies from
GalaxyZoo

GalaxyZoo Merger GalaxyZoo Elliptical GalaxyZoo Spiral

- . \




| create a test sample of ~150 ‘superclean’ SDSS galaxies from
GalaxyZoo

GalaxyZoo Merger
Pmerg, major = 0.98
LDA Merger

GalaxyZoo Elliptical GalaxyZoo Spiral
Pmerg, major = 0.34 Pmerg, major = 0.23
LDA Nonmerger LDA Nonmerger
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The kinematic predictors can remain
disturbed for longer

First Maximum Second Coale-
Passage Separation Passage scence

" M3M3e :
1.0 - :

Kasym
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Hung+ 2016 - = g !

Time relative to coalescence (Gyr)



SDSS-IV’s Mapping Nearby Galaxies at
Apache Point:

Integral Field Spectroscopy and imaging -
of >10,000 galaxies
z~0.03
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| create mock stellar kinematic maps to match the
specifications of MaNGA

r — band Flux Stellar Velocity
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| extract kinematic predictors for use in the LDA

|solated Galaxy Merging Galaxy
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| extract kinematic predictors for use in the LDA

Kinematic Predictors: Merging Galaxy

e The difference between the imaging :
and kinematic PA (APA) \ ' ‘

e The asymmetry in the velocity maps

(Vasym) ] _
e The asymmetry in the velocity

dispersion maps (oasym)
e Kinemetry residuals
e The specific angular momentum (Ag)
e The asymmetry in the Radon profile
(A, A)




| combine the kinematic predictors into one LDA technique that

combines their individual strengths

Kinematic Predictors:
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The major and minor merger rely on different predictors but
have the same accuracy
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The major and minor merger rely on different predictors but

have the same accuracy

-—

Relative Count
o (@]
o (@)}

0 Major Mergers . .
Kinematic warps

=2 0 2 4
LD1
<10 ..
§ Minor Mergers
@)
2 0.5
®©
Nz I
B4 2 0 2 4

BN Nonmerger
Merger

B Nonmerger
- Merger



The major and minor merger classifications are different; the
major mergers are more precise
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The major and minor merger classifications are different; the
major mergers are more precise
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The kinematic classifications have a significant number of false
negatives
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e Most double-peaked AGN are outflows

&  AGN (Nevin+ 2016)
R, Feedback e Moderate-luminosity AGN outflows can
drive feedback in their host galaxies
(Nevin+ 2018)
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Most double-peaked AGN are outflows
(Nevin+ 2016)

Moderate-luminosity AGN outflows can
drive feedback in their host galaxies
(Nevin+ 2018)

Combining imaging predictors leads to
more accurate and precise merger
identification (Nevin+ 2019)
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e Most double-peaked AGN are outflows
(Nevin+ 2016)

e Moderate-luminosity AGN outflows can
drive feedback in their host galaxies
(Nevin+ 2018)

e Combining imaging predictors leads to
more accurate and precise merger
identification (Nevin+ 2019)

e Combining kinematic predictors leads
to more accurate and precise merger
identification (Nevin+ 2019 in prep)

e Not as good as imaging



This technique can be applied to
MaNGA and other imaging and
Kinematic surveys




This technique can be applied to
MaNGA and other imaging and
Kinematic surveys
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This technique will be publicly available in a Github repository:

Mongoose credit: Briana Ingermann
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Explore how star formation history and
metallicity change for different types of
mergers (in radial bins)




Explore how star formation history and 10,00 Gyr
metallicity change for different types of
mergers (in radial bins)

Animation by
Tom Peterken
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There’s a lot of

opportunity for
exploration here,
using the statistical
might of MaNGA




Line dispersion (kms™)

G’Alls Multiwavelength synergy
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30 kpc
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2017
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e Most double-peaked AGN are outflows
(Nevin+ 2016)

e Moderate-luminosity AGN outflows can
drive feedback in their host galaxies
(Nevin+ 2018)

e Combining imaging predictors leads to
more accurate and precise merger
identification (Nevin+ 2019)

e Combining kinematic predictors leads
to more accurate and precise merger
identification (Nevin+ 2019 in prep)

e Not as good as imaging
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Extra Material from
Chapter 2
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lonization v Matter-bounded




lonization v Matter-bounded




log R [pc]

4.5

—— This work a=0.21 £0.05 n
~ — - One-zone NLR a =0.50 (Dopita et al. 2002) -
- —- Two-zone NLR o =0.34 (Baskin & Laor 2005) | -
? - m ’_
&0 I "
= S .*/.-.r‘—*;»%li@
! (R e
- - £
-—4 l— Ei/’_t;-, F ¢—I—<|%
3.5 T —I——~ S 1
=1 l-- T = 1
/lj B t
3.0} X .
40.0 40.5 41.0 41.5 42.0 42.5

43.0



The size of the NLR (R, r) is related to the luminosity of the
central AGN (ionizing source), this relationship can probe the
lonization conditions in the NLR

Ne 47 RNLR( ne Y /21/

R, ,ocL9
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Extra Material from
Chapter 3



Everything is clumpy



The outflow energy can disrupt cold molecular gas in a two
stage feedback model

Hopkins & Elvis 2010



The outflow energy can disrupt cold molecular gas in a two
stage feedback model
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Rotation on large scales - No

Spiral Dust Lanes

Fischer+ 2017
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Two-walled One-walled One-walled Two-walled
symmetric bicone symmetric bicone asymmetric bicone nested bicone




One-walled
symmetric bicone
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One-walled
asymmetric bicone
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Two-walled
nested bicone
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Type 1 vs Type 2 AGN - the
picture is not this clear
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Energetics
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OFAT sensitivity analysis

e How much does the reduced-chi change with each parameter/ which are the
least sensitive parameters?

e PAis least sensitive

e Half opening angles are most sensitive



Things | could do with the bicones (if | had time)

e Expand sample to other analytic models (right now restricted to two walls)

e \What is happening with the radio jets? - need to expand sample to do this

e Small scale observations of torus structure to figure out Type 1 vs Type 2
problem

e HST imaging please

e |nvestigate the role of shocks

e Entrained vs accelerated in situ - probably need 100s of pc scale
observations, right now we are just seeing the kpc-scale

e ALMA molecular gas (small-scale outflow?)

e Estimability = terrifying

e Stellar velocities for comparison’s sake - we sort of did this with H alpha



Extra material from Chapter
4
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A forward stepwise selection selects which predictors to use
and a k-fold cross-validation determines the error on each
coefficient
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Combining imaging predictors is a more effective tool
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Linear Discriminant Axis #1 (LD1) is a linear
combination of all input predictors and
iInteraction terms

LD1msjor = 3.49 X Gini+4.32 X M0 —1.01 X C+6.09 x A +8.08 X Ag
—7.67 X GinixA—7.66 X GinixAs —4.74 X My *xC —2.89 X My *xA
—1.34



Cosmological (zoom) simulations incorporate a range of galaxy
morphologies assembled over cosmic time
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Other work with
cosmological zoom
simulations has found
similar results
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Mathematical Formalism of LDA

600 (:L’)

Bayes likelihood with discriminant scores: p(7To|.CI?) — = z
0d0(@) 1 go1()

Assumes multivariate normality and homoscedasticity:

y 1.

Oo(z) = 2" X" fip — §ﬂo > i + log (7o)



- -

Linear Discriminant Analysis Quadratic Discriminant Analysis

w A
o )

Data with
fixed covariance

Data with
varying covariances

 iladesid *
n #
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Isolated t = 0.05 Gyr Isolated t = 0.39 Gyr

t=1.17 Gyr t=1.56 Gyr t=1.81Gyr t = 2.05 Gyr

- S

t =2.54 Gyr Isolated t=3.62 Gyr




X-terms

| was wrong but it affects the analysis section




Things | could do with the imaging classification

Double-check most important terms (mostly consistent)

Run the logistic regression with and without the interaction terms
Focus on disk-dominated effects when applying to SDSS imaging
Double-check AGN on vs off broadband images

HST higher z project

Looking at multiple different bands

Adjusting machine learning technique



Extra material from Chapter
5



Stellar Velocity Rag
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The kinematic predictors evolve non-linearly with time

Time [Gyr]
- 2.50
| ' * 2 2.25
0.6 -~ 4 2.00
Specific ’ : 1.75
angular £04 — 3 1.50
momentum ¢ ° 5 1.25
0.2 [ 1.00
_________ - 1 0.75
I 0.50
025 050 0.75
5 -

Ellipticity



The kinematic predictors evolve non-linearly with time
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The imaging technique is more accurate and precise
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SCATTER v NONSCATTER

Dust problems, we got em

edge-on disk

eeeeeeeeee



Relative Flux

Relative Flux
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Problems with kinemetry
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APA Oasym resids
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— This work a =0.4740.23

—  All work a =0.50+0.12

000 AGNIFS

OO0 Liu+13
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Real MaNGA AGN w/ hole



Things | could do with the kinematic classification

e Multiwavelength AGN PSF tool - this could also fix MaNGA's problem
e Kinemetry - is this a failed statistic or the tool itself?
e SCATTER v NONSCATTER - can we go back to SCATTER and fix the bug?

o Does it affect the analysis to change the velocity dispersion
e Logistic regression with interaction terms
e Could possibly add some terms that work more with velocity dispersion - like
the difference between the center of the galaxy (kinematic vs photometric)
and the center of the 2D gaussian fit to the velocity dispersion



The classification differs for elliptical galaxies - only apply to a
limited range of B/T mass ratio - model with Galfit?

GalaxyZoo Merger GalaxyZoo Elliptical GalaxyZoo Spiral
Pmerg, major = 0.98 Pmerg, major = 0.34 Pmerg, major = 0.23
LDA Merger LDA Nonmerger LDA Nonmerger

- ‘ \




Things | could do with the merger classification

e Discuss differences and limitations of the models

e Disky models = not as accurate for elliptical type galaxies

e Adjust end time - could kinematics prolong the technique beyond 0.5 Gyr after
final coalescence?

e How to test if this is applicable for MaNGA galaxies?
o Carefully test if selected mergers are biased - i.e., only brightest, nearby galaxies

e C(ollaborate on samples of lllustris?
e Additional



