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Adventures in
Mergers statistical confounds

log My = 10-SMg MaSS b

\-o

(This happens for
all mass bins!)

DeepSkies Lab:
Benchmark data for ML, uncertainty, and fancy Bayesian inference, oh my!
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Why are merging galaxies important?
Short answer: gas

Long answer: structure formation (bulge, spiral arms, bars), triggering and
suppressing star formation, triggering Active Galactic Nuclei




Accurately and consistently identifying mergers is hard




There are many different types (mass ratios)
mergers and they all look different observationally

Major merger
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There are many different types (mass ratios) and stages of
mergers and they all look different observationally
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How do we identify a diversity of galaxy mergers?
' 3 * - \ Bk |7~ /







Search engine matters, filters within the search engine also matter
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Buy Rent  Sell Home Loans
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It is important to understand false positives

$1 ,OOOImO 1bd 2ba 4,158 sqft

Columbia St, Cambridge, MA 02139
® Apartment for rent



What can we learn from apartment hunting?

e The tool matters, the tool within the tools matters (filters)

e Combining tools can be great

e Intuition is helpful




My work approaches better identifying mergers with the help
of detailed hydro and cosmological simulations

Cosmological
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Mergers .

15 Mpc across (above)
~70 kpc across (left)
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| create mock stellar kinematic maps to match the specifications of MaNGA
integral field spectroscopy

SDSS-ized
r-band image MaNGA-ized MaNGA-ized

Stellar Velocity Dispersion

Nevin+2019 Nevin+2021



How do we best identify high redshift merging galaxies?:
Expanding the toolkit to include HST Candels and JWST NIRCam imaging

SKIRT TNGS50 Merger Mock CEERS RGB Mock CEERS RGB

€3

FA44\N/F277W/F115W F356W/F200W/F150W
Aimee Schechter



Focusing on just the detailed imaging approach to identifying
mergers is enough for one day

Cosmological

Detailed

resolution,
950 Myr time resolution




2019 nttps://arxiv.org/abs/1901.01975

Accurate Identification of Galaxy Mergers with Imaging

R. NEVIN,' L. BLECHA,? J. COMERFORD,! AND J. GREENE?

I Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309, USA
2Department of Physics, University of Florida, Gainesville, FL 32611, USA
3Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

2023 https://ui.adsabs.harvard.edu/abs/2023MNRAS.522....1N/abstract

A declining major merger fraction with redshift in the local Universe from
the largest-yet catalog of major and minor mergers in SDSS

R. Nevin,!* L. Blecha,? J. Comerford,? J. Simon,3t B. A. Terrazas,* R. S. Barrows,>
J.A. Vizquez-Mata’


https://arxiv.org/abs/1901.01975
https://ui.adsabs.harvard.edu/abs/2023MNRAS.522....1N/abstract

Simulations of

pre-merger \Lf major

100s of snapshots per simulation

X 5 simulations

and nonmerging galaxies

merger (u = 0.5,f =0.3) ¥ post-merger matched isolated

GADGET-3 N-Body Simulations:
Springel & Hernquist 2003,
Springel 2005, Blecha+2018

Nevin+2019




Simulations of and nonmerging galaxies

matched isolated

pre-merger | major merger (u = 0.5, f =0.3) ¥ post-merger

t=2.6 Gyr

pre-merger ‘I, V post-merger matched isolated




My pipeline creates mock Sloan Digital Sky Survey (SDSS)
Images and measures predictors

pre-merger | major merger (u = 0.5, f = 0.3) ¥ post-merger matched isolated

post-coalescence

t=1.0 Gyr

pre-merger ,I,

post-merger matched isolated




These simulations were carried out with GADGET-3
(Springel & Hernquist 2003; Springel 2005), a smoothed-
particle hydrodynamical (SPH) and N-body code that con-
serves energy and entropy and includes sub-resolution mod-
els for physical processes such as radiative heating and cool-
ing, star formation and supernova feedback, and a multi-
phase interstellar medium (ISM). All simulations have a
baryonic mass resolution of 2.8 x 10* M, and a gravita-
tional softening length of 23 pc. SMBHs are modeled as
gravitational "sink" particles that accrete via an Eddington-
limited Bondi-Hoyle (Bondi & Hoyle 1944) prescription.
AGN feedback is also incorporated by coupling 5% of the
accretion luminosity (Lpy = cmndz) to the gas as thermal
energy. We assume a radiative efficiency €nq = 0.1 for ac-
cretion rates M > 0.01Mggq (Where Mgyq is the Eddington
limit); below this we assume radiatively inefficient accretion
following Narayan & McClintock (2008). GADGET has been
used for many studies concerning merging galaxies (e.g., Di
Matteo et al. 2005; Snyder et al. 2013a; Blecha et al. 201 1a;
Blecha et al. 2013).



Table 1. Key parameters of our suite of high-resolution GADGET -3 galaxy merger simulations.

Model M Stellar Mass | Gas Fraction | Mass Ratio
[10" Mo] | [10" Mo]
q0.5_fg0.3 20.8 59 0.3 1:2
q0.333_fg0.3 18.7 52 0.3 1:3
q0.333_fg0.1 18.7 6.3 0.1 1:3
q0.2_fg0.3_BTO0.2 16.8 5.0 0.3 1:5
q0.1_fg0.3_BTO0.2 15.1 4.6 0.3 1:10



| developed a tool within a tool known as Linear Discriminant
Analysis (LDA)

LDA combines the
strengths of all seven
measured predictors

asymmetry

oY

gini

concentration
shape asymmetry '



LDA finds the linear hyperplane that best separates mergers
from non-mergers
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Relevant details of the LDA classification include:

e The LDA relies on a prior to correct for the larger fraction of
merging relative to nonmerging galaxies in the simulations. In N19,
we use fiducial merger fraction priors of fipere = 0.1 and 0.3 for
the major and minor merger classifications, respectively. We explore
how changing the merger fraction prior affects our measured posterior
merger fraction in §4.7.

e We include interaction terms to explore correlations between
predictors.

e We use k-fold cross-validation to obtain 1o~ errors on the pre-
dictor coefficients and to measure the performance statistics of the
classifications.

e In order to select which coefficients are necessary for the clas-
sification, we use a forward step-wise selection technique, which
orders and includes only the relevant terms and interaction terms.



We solve for the hyperplane that satisfies the above equa-
tion, LD1: )
LDl =w X+, =0

where the 1

and the intercept 1s given by wy:
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Figure 18. Forward stepwise selection of the number of predictors for each run of LDA. We mark the minimum number of ‘required’ predictors
for each run with black xs. This point is within one standard error of the minima of the cross-validation error curve for each run. We run LDA

for each simulation using the predictors selected from this method.
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LDA advantages

The LDA is more accurate and precise than any of the individual predictors in

identifying mergers.

It is also not a black box!
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Which imaging predictors are most important?



| measure predictor values and classify the ~1.3 million
galaxies in SDSS using MergerMonger

MergerMonager Github Repo

p— ObjID = 1237661852010283046

LD1 = 4.72

pmerg = 0.991

CDF = 0.9026

Shape Asymmetry (A_S)

40.0
-40.0 0 40.0

Arcsec

Nevin+2023


https://github.com/beckynevin/MergerMonger-public

Catalogs

e Predictors (see below)
e C(lassifications for each stage and mass ratio

e Marginalized p_merg values (good for comparison)

Predictor Values” Flagsd
SDSS ObjID“ Gini My, C A S n Ag S/N¢  low S/N  outlier predictor  segmap
1237665179521187863 (A) 054 -2.15 362 -004 -001 149 0.13 998 0 0 0
1237661852010283046 (B) 069 -096 359 022 0.01 132 078 1249 0 0 0
1237648720718463286 (C)  0.56 -1.0 366 043 -0.16 058 0.89 6.4 0 0 0
1237662306186428502 (D) 056 -2.16 359 0.14 002 138 057 1635 0 0 0
1237653589018018166 (E) 056 -207 353 002 0.01 147 040 1431 0 0 0
1237654383587492073 (F) 058 081 161 054 006 097 0.12 5427 0 0 0



By stage

Classification Accuracy  Precision  Recall Fl tobs

All Major Mergers 0.86 0.96 0.83 0.89 231
Major, pre-coalescence 0.87 0.96 0.83 089 216
Major, early stage 0.86 0.95 078 086 1.72
Major, late stage 0.94 0.97 0.84 090 0.83
Major, post-coalescence (0.5) 0.84 0.89 0.65 075 040
Major, post-coalescence (1.0) 0.90 0.94 0.85 089 1.26
All Minor Mergers 0.77 0.93 063 075 536
Minor, pre-coalescence 0.80 0.89 0.71 079 5.75
Minor, early stage 0.83 0.89 0.73 0.80 3.11
Minor, late stage 0.93 0.79 0.79 079 585
Minor, post-coalescence (0.5) 0.85 0.53 0.60 056 0.19
Minor, post-coalescence (1.0) 0.85 0.84 0.71 0.77 096



The properties of the merger sample are unbiased
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There are multiple different classifications by merger stage,
| calculate Prmerg values for all of them




| was able to measure over bins in redshift and stellar mass
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Mass completeness

Next, we determine the mass completeness limit as a function of
redshift using the technique from Darvish et al. (2015). For each
redshift bin®, we compute the lowest stellar mass (Mj;;,,) that could
be detected for each galaxy given the magnitude limit of SDSS
(r = 17.77): log(Myjy,) = log(M) + 0.4 x (r = 17.77), where r
is the apparent (rest-frame) r—band magnitude of each galaxy and
M is the stellar mass. The mass completeness limit at each redshift
bin is the mass at which 95% of the limiting masses are below the
mass completeness limit, meaning that only 5% of galaxies would
be missed in the lowest mass end of the mass function.

12.5 1

12.0 1

log stellar mass

T

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z

Figure 5. Mass completeness as a function of redshift for redshift bins with
spacing Az = 0.02. For each redshift bin, we determine the 95% completeness
limit (pink line) and eliminate all galaxies below this point. For the distribution
of masses at each redshift bin, see Appendix A.



| measure the merger fraction for every redshift and mass
bin and iteratively filt
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The major merger fraction increases with increasing redshift

This is consistent with
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The major merger fraction decreases with redshift
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This is a surprising result!

4

more mayor
mergers nearby

log My = 10-SMg ™MaSS bin

(This happens for
all mass bins!)

(This happens

witheut mass
bins!) /
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major merger fraction

major merger fraction




This is a surprising result! What is going on here?
Do you have any
ideas why this is
happening?

log My = 10:SMg MOSS bin

(This happens
without mass
bins!)

I|-O

(This happens for
all mass bins!)

major merger fraction

major merger fraction

00> redshift o.\@ .03 redshift op.(a



Statistical confound: An

(annoying) variable that

influences both the

independent and the

dependent variable, creating

a spurious correlation m
AL E D AN N R

e R o*!” .-

Statistical Rethinking by Richard McElreath really helped me out *


http://www.youtube.com/watch?v=UpP-_mBvECI

A statistical confound with mass drives this behavior

e Mass increases with redshift in depth limited surveys like SDSS
e Merger fraction increases with mass
e t/f merger fraction appears to increase with redshift

0.6

0.5 1

0.4 1

2031 F

G

o

0.1 -

MCMC slope = 0.36 +/- 0.32

0-0 T T T T
0.00 0.05 0.10 0.15 0.20
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Lessons learned

e Trust myself
e Sanity checks to figure out what's happening behind the scenes
e The importance of reproducing past results



Other statistical confounds? No

major merger fraction increases with B/T and g — r mostly for higher mass galaxies

Trend with B/T and color is different than it being a confound



So what'’s actually happening here?



Merger fraction — merger rate as a function of galaxy and
merger properties

NANOGrav 15-year dataset

.wj

SMBH gravitational wave
background!

Joe Simon  Julie Comerford

Simon+2023 in prep



My merger catalog has enabled multiple studies into the
properties of merging galaxies and the AGN-merger
connection:

Comerford+2023; An excess of AGNs triggered by galaxy mergers in
MaNGA galaxies of mass 10" Mo

Hernandez-Toledo+2023; MaNGA AGN have an enhanced merger fraction
Negus+2023; Coronal line MaNGA galaxies

-40.0 ‘p— o

40.0 0 40.0


https://arxiv.org/pdf/2305.03834.pdf
https://ui.adsabs.harvard.edu/abs/2023ApJ...945..127N/abstract

My work approaches better identifying mergers with the help
of detailed hydro and cosmological simulations

Cosmological

P B I Dcisiled
Mergers .

15 Mpc across (above)
~70 kpc across (left)



| create mock stellar kinematic maps to match the specifications of MaNGA
integral field spectroscopy

SDSS-ized
r-band image MaNGA-ized MaNGA-ized

Stellar Velocity Dispersion

Nevin+2019 Nevin+2021



How do we best identify high redshift merging galaxies?:
Expanding the toolkit to include HST Candels and JWST NIRCam imaging

SKIRT TNGS50 Merger Mock CEERS RGB Mock CEERS RGB

€3

FA44\N/F277W/F115W F356W/F200W/F150W
Aimee Schechter



(This happens for
all mass bins!)

DeepSkies Lab:

Benchmark data for ML, uncertainty, and fancy Bayesian inference, oh my!
po—

A\




| wanted to come to Fermilab and work with the Deepskies crew because:
e Ethical and careful Al research

e Software expertise

e Cosmology and survey science

e (Galaxies and spectra

DEEP SKIES

Bringing Artificial Intelligence to Astrophysics



Aimee
Schechter

Images

HST F814W JWST F200W

Mock F200W Image
JADES-Deep
50 depth is 30.6 AB mag

e

i

5.379 X 1018  erg/cm?/s/A 5_

Schechter+2024 Nevin+2024



Carefully incorporating domain adaptation is necessary and
Interesting

Real JWST galaxies
(SMACS 0723)

~ .
&

Simulated galaxies
SKIRT TNG50 Merger Mock CEERS RGB

Mock CEERS RGB

L2

FA44AW/F277W/F115W F356W/F200W/F150W




Carefully incorporating domain adaptation is necessary and
Interesting

Real JWST galaxies
(SMACS 0723)

~ .
&

Simulated galaxies
SKIRT TNG50 Merger Mock CEERS RGB

Mock CEERS RGB

L2

FA44AW/F277W/F115W F356W/F200W/F150W




Mergers Non-mergers

We are working with Alex e —
Ciprijanovic¢, who is a
domain adaptation expert

Target Target

Ciprijanovié+
2020a,2021




Benchmark

N\

Hierarchical Inference




DeepBench: Fine-grained control for simulations for

neural inference
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Control over noise

Ability to propagate noise

Its dynamic, create new examples



We are using simple benchmark datasets (like the
pendulum) to build complex inference tools

Things we’d like to infer about a pendulum:

starting angle
mass
length

Data:

position and momentum as a function of time
(with added noise)




X position
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Why hierarchical analysis?

Astro applications:

e Many exoplanets
e Many gravitational lenses

When you want to infer individual properties but
also global properties and have both inform one
another




The pendulum as a laboratory to test these methods

Things we'd like to infer about one pendulum:

- starting angle
- mass
- length

Things we'd like to infer using the ensemble of
pendulums:

FARTH - acceleration due to gravity (ag)



Meanwhile, on Mars...




eanwhile, on Mars...




There are many experiments with different conditions
In different groups = hierarchical Bayesian inference

Things we'd like to infer about one pendulum:

)
N

= —_ - starting angle
- mass
- length

N

EARTH
Things we'd like to infer using the ensemble of

pendulums:

@/ y - acceleration due to gravity (ag)
- - Universal gravitational constant (G)



A\
N

N

EARTH

H_a_g

o_ag

a_g

planet X

w_a_g ~ LogUniform
o_a_g ~ LogUniform
a_g ~ Normal

L ~ LogUniform
theta ~ LogUniform
o ~ Exponential

obs ~ Normal

pend_1i

data




pyro-ppl/numpyro

Probabilistic programming with NumPy powered by

JAX for autograd and JIT compilation to

GPU/TPU/CPU.
mackelab/sbi . ' Simulation based
Simulation-based inference toolkit inference does not
require a likelihood!
A 40 QR 67 L8 w 437 % 106 O
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This system is essential for preparing a methodology
for cosmological inference

Things we'd like to infer about one individual
image:

- Lens parameters (ie Einstein radius)

i l k| BS Things we’d like to infer using the ensemble of
| Wil & T lenses:

- Cosmological parameters (w,)



Benchmark

N\

Hierarchical Inference




Most neural networks are deterministic

In mathematics, computer science and physics, a deterministic system
is @ system in which no randomness is involved in the development of

future states of the system. A deterministic model will thus always
produce the same output from a given starting condition or initial state.







There are different types of uncertainty to consider in
machine learning

data uncertainty versus model uncertainty




Using deepbench, does the expected error match that
estimated using various ML methods?

Simulation based inference:
hierarchical and non-h



Analytical expectation of data uncertainty
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Model (left) uncertainty and data (right) uncertainty

Analytical expectation of data uncertainty
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Goal: build a framework to quantify uncertainty in the
parameter estimates




Goal: build a framework to quantify uncertainty in the
parameter estimates




Use the UQ comparison and the tunable simulations to
do a comparative analysis of inference methods

Non-hierarchical sampling
analysis

No Pooling

Full Pooling




Use the UQ comparison and the tunable simulations to
do a comparative analysis of inference methods

Non-hierarchical sampling
anaIyS|s_ Simulation Based Inference
No Pooling

Full Pooling

Hierarchical sampling
analysis



Adventures in
Mergers statistical confounds

log My = 10-SMg MaSS b

\-o

(This happens for
all mass bins!)

DeepSkies Lab:
Benchmark data for ML, uncertainty, and fancy Bayesian inference, oh my!
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